Syntax of Pandas series value_counts:

value_counts(values, sort: ‘bool’ = True, ascending: ‘bool’ = False, normalize: ‘bool’ = False, bins=None, dropna: ‘bool’ = True) => ‘Series’

sort:By default True will sort by values if False will return count of values as per entries in series.

ascending: Sort in ascending order By default False if True will return output as ascending orders by count of values.

normalize:By default False If True will compute histogram for values or group them in certain intervals or ranges as in histogram.

bins=none, integer ,optional Rather than count values, group them into half-open bins.

dropna:By Default True, Don not include counts of NaN (np.nan) values.If False will return count of NaN value.

How to use pandas series value counts:

Example of code shown below

#import pandas and numpy libarary
import pandas as pd
import numpy as np
#from panda import series and data frame
from pandas import Series,DataFrame
# create a series alphabetic and numeric
seriesa=Series(['US','India','China','Chicago','India','UK','UK'])
seriesn=pd.Series(['10','23','10','23','40','40','50',np.nan,'50','10'])
#print series
seriesa
0         US
1      India
2      China
3    Chicago
4      India
5         UK
6         UK
dtype: object
# series pandas value counts apply
seriesa.value_counts()
India      2
UK         2
US         1
China      1
Chicago    1
dtype: int64
#print series
seriesn
0     10
1     23
2     10
3     23
4     40
5     40
6     50
7    NaN
8     50
9     10
#series value counts apply
seriesn.value_counts()
10    3
23    2
40    2
50    2
dtype: int64
pandas series value_counts
1.pandas series value_counts

By SC